
Pergamon 

www.elsevier.comllocate/jappmathmech 

.I. Appl. Maths Mechs, Vol. 67, No. 2, pp. 269-282,2003 
0 2003 Elsevier Science Ltd 

PII: S0021-8928(03)00051-0 
All rights reserved. Printed in Great Britain 

0021-8928/03/$-see front matter 

A TWO-DIMENSIONAL MODEL OF 
THE DYNAMICS OF SHARP BENDING 

OF A NON-LINEARLY ELASTIC PLATE-j- 

D. V. DOLGIKH and V. V. KISELEV 

Ekaterinburg 

e-mail: kiseliev@imp.uran.ru 

(Received 8 October 2002) 

To describe the dynamics of the bending of a thin non-linearly elastic plate, a version of perturbation theory is proposed which 
correctly takes into account the non-linearity of the medium, the non-uniformity of the deformations along the plate thickness 
and the boundary conditions on its surface. An effective (2 + 1)-dimensional model is constructed which generalizes the static 
non-linearly geometrical Fbppl-Karman equations. Two-dimensional solitons of the longitudinal deformation are obtained. The 
conditions for their existence and stability are investigated. 0 2003 Elsevier Science Ltd. All rights reserved. 

At the present time, it is mainly longitudinal non-linearly elastic waves in an unbounded medium that 
have been most completely described theoretically (see [ 11 and the literature cited there), The features 
of the formation and physical properties of non-linearly elastic excitations and structures in bounded 
samples and multilayered materials in regions where they undergo sharp transverse bending have hardly 
been investigated. The derivation of simplified models for non-linearly elastic solids is based on physically 
obvious geometrical hypotheses, the correctness of which is difficult to assess quantitatively. These 
approximations are often not satisfied by the boundary conditions on the surfaces of the samples. This 
has led to an inaccurate transformation with small terms and different ways of writing the fundamental 
formulae in the non-linear theory of elastic rods, plated 12-51 and shells. 

Below we propose a version of perturbation theory for constructing a simplified non-linear (2 + l)- 
dimensional model for thin plates, the amplitude of the bending of which is comparable with their 
thickness. The bending of the plates is assumed to be sharp. A non-linear theory of elasticity is used 
[6], in which the elastic energy of the medium contains no gradients of the Lagrange strain tensor. Hence, 
the initial (3 + 1)-dimensional equations of the non-linear theory of elasticity contain no dispersion 
terms. It is interesting that in the effective (2 + 1)-dimensional model of thin plates, linear and non- 
linear dispersion terms appear as a result of eliminating the spatial variable, characterizing the non- 
uniformity of the deformation along the normal to the plate, and as a result of taking into account the 
boundary conditions on its developed surface. When non-linearity and dispersion effects are balanced 
it is possible for soliton-like states to form on the surface of the plate. Hence, when constructing simplified 
(2 + 1)-dimensional non-linear equations for a plate, the boundary conditions on its developed surface 
must be carefully satisfied. For this purpose we solve a sequence of boundary-value problems in the 
direction of the normal to the plane of the plate and monitor the accuracy of the parameters 
characterizing the space-time deformation of the plate, and the geometrical and physical non-linearity 
of the medium. The boundary conditions on the side faces of the plate are transformed into effective 
boundary conditions for the (2 + 1)-dimensional model. 

The first orders of the proposed perturbation theory in the quasi-static limit lead to well-known 
equations of the statics of flexible plates [7,8]. However, such a “geometrical” approximation does not 
completely describe the non-linear dynamics of sharp bendings of a plate, since, for quasi-one- 
dimensional deformations, the non-linear two-dimensional equations reduce to linear equations. In order 
to take into account correctly the effects of the geometrical and physical non-linearity of the medium, 
we consider subsequent orders of perturbation theory. As a result an effective (2 + l)-dimensional model 
is obtained which adequately describes the interaction between the longitudinal deformations, the 
transverse twistings and bendings of the plate, and also the local changes in the inertial properties of 
the plate due to its twisting. The transverse loading of the plate is modelled by sources in the simplified 
equations. 
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Below we consider the model problem of the stability and self-resonant vibrations of a plate, which 
illustrates the fact that the non-linearly geometrical Foppl-Karman approximation [7,8] is insufficient. 
Approximations based on geometrical hypotheses or expansions of the displacements in Taylor series 
in the coordinate perpendicular to the plate surface often do not satisfy the boundary conditions. Hence, 
they may lead to incorrect assessments and qualitative conclusions in the theoretical description of non- 
linear, in particular, soliton-like states in the plate, which is illustrated using the example of multisolitons 
of longitudinal deformation in the plate. 

The formation of purely longitudinal deformations of the plate corresponds to more rapid processes 
and requires a special consideration. 

1. FUNDAMENTAL RELATIONS OF THE NON-LINEAR THEORY 
OF ELASTICITY 

In the non-linear theory of finite deformations, the elastic energy of the medium is written in the form 
of an expansion in invariants of the Lagrange strain tensor with components 

1 
Here xk are the coordinates Of a point mass Of the medium before deformation, xk = xk + r&(x, t) are 
the coordinates at the same point after deformation (i, k = 1,2,3), and u(x, t) is the displacement vector. 
For an isotropic medium we choose [7] as the independent invariants of the tensor ]]rkk]], in terms of 
which the remaining invariance can be expressed, the following 

We will represent the expression for the elastic energy of an isotropic non-linear solid in the form 

W = I $dx’, I$ = h2 51, + ~1, + +I3 + BI,I, + $I; (1.3) 
“0 

Here I$ is the energy per unit volume of the solid before deformation. The elastic moduli h, u, A, B, 
and C are assumed to be comparable in order of magnitude. Further, for a plate we will distinguish a 
region of space-time scales and external loads where, because of the smallness of the deformations, we 
can neglect the other invariants in the expansion of the energy (1.3). 

The dynamic equations for a non-linearly elastic solid can be obtained from Hamilton’s principle 

I t 

6s + jGAdt’ = 0; S = j[K- U]dt’ (1.4) 

The kinetic energy of the system has the form 

(1.5) 

where p. is the density of the material in the undeformed state (henceforth we will assume p. = const), 
and the integration is carried out over the volume V. of the undeformed body. 

The potential energy U includes the elastic energy W of the body and the energy of its interaction 
WI with external mass forces 

U= w+ w,; W, = -5 ooPiuidx’ (l-6) 
“0 

Here Pi is the external mass force and pOpi is the force acting on unit volume of the body before 
deformation. 
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The work done by the external surface forces has the form [6] 

The integration is carried out over the surface o of the undeformed body. 
Hamilton’s principle (1.4) gives the necessary dynamic equations [6] 

-poa~ui+asPis+pOPi = 0; P, = -+a u.- a$ 34 
hij k ‘hkj 

where ]]Pi.]] is the Piola-Kirchhoff tensor, and also the boundary conditions, referred to the surface 
of the un d eformed plate 

piss (0 = (l-9) 

Here n is the vector of the unit normal to the surface cs. 

2. CONSTRUCTION OF THE SIMPLIFIED (2 + l)-DIMENSIONAL 
EQUATIONS FOR A NON-LINEARLY ELASTIC PLATE 

Consider a non-linearly elastic plate, parallel to thex@z plane. Suppose d is the plate thickness along 
the x3 axis, I is the characteristic spatial scale of its deformation in the xiOxz plane, and a and 
t& = Z/a are the characteristic amplitude of the displacements and the characteristic deformation 
time. 

We will introduce two small parameters e1 = all and e2 = d/Z, which reflect the order of smallness of 
the amplitudes of the displacements and of the plate thickness. In the initial dynamic equations (1.8) 
we will change to the dimensionless variables 

&, = X,/L, ‘TJ = x,ld, Z = t/t&, Ui = CIfii (2.1) 

They then take the form 

~~1~2a~~a = hdp, + c2agpap + a,p,, (2.2) 

Here and henceforth a, p = 1,2; 3, = a/&. 
Consider the region of sharp bends of the plate, where the approximate estimate e1 - e2 (or a - d) 

holds. We will assume that the mass force and external stress on the developed planes (TJ = &l/2) of 
the plate are characterized in order of magnitude by relations 

dM’,l~ = 
5 O(e;), dp,P,lp = O(E~); Tf;/p = O(E;), Tzt& = O(r;) 

The external loading on the side faces of the plate are much greater 

(2.4) 

(2.5) 

In this paper the fields iz, describe not only local deformations of the material with characteristic 
scale Z, but also the quasi-uniform plane stressed state of the plate, for which al+& = O(r:). These 
conditions distinguish the region of physical parameters of the problem in which non-linear dynamics 
of the plate will be described within the framework of the simpler non-linear (2 + 1)-dimensional model. 

To construct the simplified equations we will seek solutions of the initial (3 + l)-dimensional equations 
(2.2) and (2.3) in the form 

4) 
ii, = u3 

- (n) - -Cd 
+ c ii, , ii, = c u, 

(2.6) 

n=l n=l 
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The superscripts indicate the general order the corresponding terms in the parameters eI and 
9 (El - 4. 

We will confine ourselves to considering comparatively slow processes 

a$,&, = T;;Ip = O&) (2.7) 
In order to indicate the first order of a derivative with respect to time, we will formally make the 
replacement a, 3 aTI. 

The following representation corresponds to expansion (2.6) 

pij = c py P-8) 

Substituting (2.8) in (2.2) and (2.3) and equating terms of the same order in the parameters e1 and e2 
to zero, we obtain a chain of equations. The necessary boundary conditions are found by expanding 
the right-hand side of Eq. (1.9) in the parameters l 1 and e2. The first orders of perturbation theory give 
the simple boundary-value problems 

a,&; = 0, P:$ = *,,* = 0, i = 0, 1,2,3 (2.9) 

a&i = 0, ~21~ =f112 = 0, k = 1,2 (2.10) 

As a result of solving these we obtain expressions for the fields I$). The functions I$) = (i = 0, 1) 
do not depend on n. This simplifies the further calculations. Henceforth we will denote functions that 
are independent of IJ by a tilde: Iif’ = Iif) (i = 0, 1). For Z$’ (k = 1,2), i$) (n = 2,3) we obtain the 
expressions 

jp’ = a -E2aau:k-‘++i~), k = 1,2 (2.11) 

-(n’ = 
u3 -&-(-;(‘*q)2*$ -2’ + 

+ [h,a,ii&” - I) + E,E~(~ + p)(a,ii$‘a,ii~))(“-2’ Ill) + ii:“‘, Iz = 2,3 
(2.12) 

The functions $, SF) arose as a result of the integration and are as yet arbitrary. They will be determined 
by the next orders of perturbation theory. 

We can express the components of the two-dimensional strain tensor in terms of the functions Z’$ - I) 
and Zim- 2, (m = 2,3) 

q$’ = r$b,r27jaaagii~-2); m = 2,3 (2.13) 

The tensor with components 

‘aP (m) = (q2)[a,iir-‘) + a,;;:-‘) + c,(aaic~~apii~)fm-2’] 

describes “plane” deformation that is uniform over the plate thickness. Here and henceforth notation 
0f the form (a,i.Qa,u, > -C) (m-2) implies the sum of all products of the quantities aa@ and a@$k), which 
satisfy the limit i + k = m - 2. For further calculations the following relation between $1 and &$ will 
be useful 

(n) 
7l33 = n = 2,3 

We will illustrate the general scheme for integrating the equations of perturbation theory using the 
example of the following boundary-value problem (everywhere henceforth, unless otherwise stated, 
m = 3, 4) 
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a ph’+E a p’“-1’ 
11 a3 2paf3 =O (2.15) 

In Eqs (2.15) the tensor IIP$ll (k = 2,3) is symmetrical and can be expressed in terms of functions 
introduced 

Ph”B = (&$laqapp = h(T$’ + T&aag + 2pl$ = -E,E2qia~i~-2) + 0:; (2.17) 

Here i as = h’A6,s + 2uQs is the differential operator, o$ are the components of the symmetrical 
tensor, characterizing the plane stressed state of the plate 

(2.18) 

and h’ = 2hp/(h + 2~) is the effective modulus of elasticity of plane deformation. The stresses o$ 
give rise to a load on the side faces of the plate. In particular, when there is no load of the order of E: 
on the side faces of the plate, we can put $‘) = IiF) = cr$ = 0, and the perturbation theory is simplified 
considerably. 

We integrate Eqs (2.15) with respect to n in the limits from n = 0 to a certain value n (In] s ‘/2). We 
obtain 

(2.19) 

In relations (2.19) only the dependence on the variable IJ is indicated explicitly. Assuming n = + 1/2 in 
(2.19) and taking boundary conditions (2.16) into account, we obtain a system from which we can find 
P$‘(O) and equations connecting the functions I$” - 2, and @ - 3, 

Reverting from Eqs (2.20) to Eqs (2.19) we obtain 

On the other hand, by definition (the second relation of (1X)), we have 

(2.20) 

(2.21) 

(2.22) 

Note that on the right-hand side of this equation all terms apart from (a/#$$) are already known. 
Hence, by combining relations (2.21) and (2.22) we can calculate the longitudinal displacements 

$$m) 
da I 

AL\aaiip-3)+ 

(2.23) 
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Here HF) = IZLm) (&, tZ2, r) are functions which arise when Eqs (2.21) and (2.22) are integrated. 
When s = 3, 4’the components P,s (‘) and P@ are not equal to one another. However, by definition 

(the second relation of (1.8)), they are related to one another and the function P$$ is also known. Hence, 
from the equations of perturbation theory 

dp()P:” + ‘) +E,ag~:"B)+a I++*) ? 33 = po,62a$~-3) (2.24) 

we can obtain Pf3+ ‘) when s = 3,4. When Eqs (2.24) are integrated with respect to 11 one must take 
into account the non-zero boundary conditions on the plate surface (see (1.9) and (2.24)) 

(s+ 1) 
p33 I 

ext (s + 1) 

lj =*I/2 = IT331 (2.25) 

and the mass forces, if there are any. 
The scheme for integrating Eq. (2.24) is no different form that considered in the example of Eq. (2.15). 

As a result of simple calculations we find P$‘$(q) and the evolution equation for the transverse 
displacements of the plate 

2 -(n-4) 
k&E2ar,U3 = pod{ P:“‘) + (P$‘} - 

h’+2p (2.26) 
-- 

12 n=4,5 

Here and henceforth, for brevity, we have introduced the notation 

(2.27) 

In the static case (3: Sp = 0) when there is no load of the order of l 3 on the side faces of the plate, 
the second equation of (2.20) (m = 3) and Eq. (2.26) (n = 4) form a closed system, identical with the 
Foppl-Karman equations for a thin plate [7], which are usually derived from the equilibrium conditions 
when using geometrical hypotheses. This approximation only takes into account the geometrical non- 
linearity of the medium and is insufficient to investigate the non-linear dynamics of plates. In fact, as 
a consequence of the second equation of (2.20) (m = 3), the last term in Eq. (2.26) (n = 4) can be 
written in the form 

As a result, non-linear equation (2.26) becomes close to linear, and in the case of one-dimensional 
deformations it reduces to a linear equation. Hence, the non-linear dynamics of thin plates is only 
completely developed in the next orders of perturbation theory. We emphasize that these relations of 
dynamics will be due not only to the geometrical non-linearity of the medium but also the physical non- 
linearity. The physical non-linearity of the medium is characterized by invariance of the third and higher 
orders in the expansion of the elastic energy (1.3). In order to go outside the framework of the “quasi- 
linear” approximation (2.20), (2.26), we consider the equations of perturbation theory of the fifth and 
sixth orders in the parameters e1 and e2, These calculations are more tedious but can be carried out 
using the previous scheme. 

The dynamic equations for the longitudinal deformations of the plate have the form 

prlE2a$il:) = a F(~) + E a o(4) + eih'(h' + 2P)Aa 
2 B 4 48~ 

,(2) + z a n(4) 
an 2 B 4 

Here 
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The effective longitudinal forces 

(2.29) 

are connected with the external loading of the plate, where, by relations (1.9) and (2.4) 

It is interesting that the non-uniform transverse loading of the plate by surface and mass forces 
generates an effective longitudinal force (the first term on the right-hand side of expression (2.29). The 
components of the tensor 11 I@ 11 have the form 

where 
A WB 1 a, = - 
2+hji* a2 = (h+2pj3 [- h3A + 6ph2B + 8p3c] - 4 

bl = &2a,+3+‘], 6, 

In relation (2.30) the non-linear terms, which depend on ~3, reflect the interaction of the longitudinal 
deformations of the plate, whereas terms which depend on H$@ are induced by transverse bendings of 
the plate, it twists and curvature. 

The dynamic equation for the correction Zi2) has the form 

(2.31) 

I 
3-(O) A u3 +e,&Ji~’ 

Here q@) is the effective two-dimensional field of the external forces, which lead to transverse bendings 
of the plate 

(6) 
4 = l 2aa {l&y] +dp,(qPZ’) + 1 + 

! [ 

E,2h 
+ @({q2P$‘l +dpo(q2P:))) + {I$‘} +dpo(Pr’) 

(2.32) 

The boundary conditions on the plate surface 

G’(, = *,/2 = 
([T;y + [T:;1](4)e,aaiip + [Tsx,f](5)e,~,ii:p))~q =*,n (2.33) 

follow from expansion (1.9) up to terms of the sixth order in the parameters l 1 and l 2. 
The quantity I@ takes into account the effects of non-linear dispersion, and also the interaction of 

the inhomogeneous twistings, flexure and bendings of the plate with one another and with its longitudinal 
deformations 
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where 

Note that the second term in the square brackets on the left-hand side of Eq. (2.31) takes into account 
the change in the inertial properties of the plate due to local changes in its curvature. 

The results obtained can be combined and used to construct an effective system of (2 + 1)-dimensional 
equations for thin plates, the bending of which is comparable with their thickness. These equations define 
the complete longitudinal and transverse displacements of the plate 

Combining approximations (2.20) and (2.28), (2.26) and (2.31), it is easy to show that, up to terms 
of the sixth order in the parameters E] and e2 inclusive, the equations of the evolution of the fields 
V, and y are 

El E*j.l$, vu = Ff) + l ,ago,p + 
E$yh’ + 2c() 

481.1 
Aa E(‘) + E an a lIt4) 2 P aS (2.35) 

Here we have introduced the two-dimensional deformations and stresses 

OaP = a’qap + 2PEap 

The effective two-dimensional forces have the form 

4 eff = { Pg’ + P$‘> + dp, (P?) + P:5’) + q@) (2.37) 

(2 Expressions for E, 
i 

, II@) and @d are obtained from the formal replacement Zc’ + vu, izpj -+ ~3 
introduced above. T e closed system (2.35), (2.36) is an approximation which does not violate the 
boundary conditions on the plate surface up to terms O(E;). The effective equations obtained take into 
account the fundamental non-linear interactions in the plate. They cannot be reduced to linear equations 
in the case of one-dimensional deformations. 

Note that, when relations (2.20) and (2.26) are taken into account the form of system (2.35), (2.36) 
may be altered. In particular using relations (2.26) one can reduce the overall order of Eq. (2.26) - one 
can express the derivatives A3v3 in terms of second and fourth-order derivatives. 
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For the model obtained one must formulate effective boundary conditions on the sides of the plate. 
They can be derived from the variational principle (1.4) after substituting expressions for the fields iit), 
obtained from perturbation theory, into it. As a result of simple integrations, the variational problem 
gives the necessary boundary conditions on the sides of the plate, and also the conditions which take 
into account the concentrated forces at the comers of the plate. It can be shown that such an algorithm, 
in the fourth order in the parameters cl and ~2, leads to boundary conditions that are known for the 
Foppl-Karman equations [7,8]. 

3. A SIMPLE MODEL PROBLEM 

Consider a plate loaded by external forces along the x1 axis 

Tll’ls, = fl, = O(E:) + O(r;) 

We will assume, for simplicity, that there are no stresses Tlqx’ of order E; on the side faces of the plate. 
When c1 = &1i we will assume conditions of hinge support of the sides of the plate. We will also assume 
that when k2 = ?Z2 the displacements of the plate are bounded by constraints in thexz direction, which 
allow of displacements of the plate in only the x1 and x3 directions. 

In this case 

Vl = V&l), v3 = v3(5,), v2 = 0 

and the problem is simplified. 
Although it is obviously difficult to realise this situation experimentally, nevertheless it is useful to 

consider it. This example illustrates the insufficiency of the Foppl-Karman approximation [7, 81 and 
contains features which may be encountered in more complex cases. 

Suppose the constant stress Tff’ is close to the value T’;‘;, for which, according to the linear theory, 
a loss of stability of the plate occurs 

In the region of neutral stability of the plate the dynamics of the fields Vi will be slow 

In order to stress the second order of the derivative with respect to time we will formally make the 
replacement z + z2. 

We will obtain the effective boundary conditions for the plate using the scheme described in the 
previous section. We will assume that on the sides 51 = H1 of the plate the values of the variations 
SZ$), &3${k) are fixed, while the variations 6&I@), &i-i{’ + r) are arbitrary (k = 0,2). Under conditions 
(3.1) the following boundary conditions agree with the equations of perturbation theory 

v315, = fl, = 
ext (2) 

+3/5, =H, = 0, o;:‘ls, =*I, = [T,, 1 

4’15, = fl, = [ T;:‘f4’ - ([ T;;‘](2))2($ + (;;;;;z) 

Taking relations (3.1) and (3.2) into account, we obtain from the second equation of (2.20) and (2.28) 

of’ = [T;:‘]“’ + o(E;) 

(4) 
011 = - (E,E~)~ b, + b, + c + h’ 

24 1 (a;v3)2 + a;$ =fl, + O(E;) 
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while from Eq. (2.36) we obtain a closed equation for y 

a& +a,a:u, +a,afu, +ga*ra,v,(a:v,,2] = 0 

where 
(3.4) 

a2 = -- ‘([T;:1f2)+ [T~~]‘4’-~([T;;L](2))2) 
P 

2 
3a, + a2 

u4 = gpjh’ + 2p+ 2[T:;yy + - 
10 h’+2J.l >> 

g = $j+2)2w+ 21) 

Note that, as a consequence of estimates (3.1), when calculating 014 
and when deriving Eq. (3.4) we omitted the terms -~~&u,. 

we neglected the inertial terms, 

For the problem in question, the non-linearly geometric Foppl-Karman equations can be reduced 
to linear equations and lead to the threshold stress 

Tl’f = -+e2)2(h’ + 2~) 

for which a neutrally stable solution of the form y - sinrc(& + II) appears. In this case the dimensional 
length of the plate 2L1 (the dimensionless length U,) and the characteristic scale I are connected by 
the relation 2LI/l = 24r = n, where II is a natural number (values of II > 1 only arise in the case of an 
explosive load [9]). 

We will seek a solution of the non-linear equation (3.4) in the form 

vg = A(z,)sinx(c, + E,) (3.5) 

The secular terms in Eq. (3.4) will be eliminated if 

iItzA+6$A-YA3 = 0; coo’ = L14k4 -a27c2, y = gx74 (3.6) 

Suppose A = 1, a,,A = 0 when 72 = 0 (the amplitude a of the displacements of the plate is introduced 
in the definition of et). Equation (3.6) allows of the first integral 

2(a,zA)2 = y(A2- l)(A2 - p); p + 1 = 20,2/y (3.7) 

Equation (3.7) has a bounded solution only when l3 > 1 [lo]. The neutral stability of the plate corresponds 
to the equality, Hence we obtain the threshold value of the modulus of the external loading 

Hence, loss of stability of a non-linearly elastic plate occurs for a load which differs from that obtained 
from the ‘quasi-linear” theory [7, 81. 

Suppose the longitudinal load on the plate is less than the critical value: 0’0 > y. We will discuss the 
forced vibrations of a plate acted upon by a small resonant load with a developed surface 

eff 
4 = T:;‘l = aq(x, z2)c0s~(~,) 

Here we have introduced a new dimensionless parameter a, characterizing the smallness of the external 
action (0 < a c 1). Suppose the amplitude of the external force varies slowly compared with its 
frequency: a,,q/a,, @ = o( 1). 

In this case, instead of Eq. (3.6) we have the following for the amplitude of the vibrations of the plate 

$*A + c&A - yA3 = olf(z,)c0s~(~,) (3.8) 
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where 

The properties of the solutions of non-linear equation (3.8) with zero initial data (A, &A) = (0,O) 
were investigated in [ll] and the conditions for which the energy of the system increases, although the 
external force remains small, were obtained. 

Unlike resonance, in the linear problem in order for non-linear self-resonance to occur it is necessary 
for the amplitude of the external force to exceed a certain threshold value. Moreover, in the non-linear 
problem the frequency of natural vibrations of the plate decreases as the amplitude increases. Hence, 
to achieve self-resonance at the first stage (while the amplitude of the vibrations of the plate is still 
small) one must slowly vary the phase of the inducing forces 

$(2,) = OoT2 + ct-2b’3aqa2(1 + %,), h 2 0 

The conditions which the functions f and 0 must satisfy in order for the problem to have increasing 
solutions as r2 + 00, were obtained in [ 111. These conditions depend on the rate of monotonic change 
in the frequency a22 $ of the inducing force and correspond to hard (h = 0) and soft (h > 0) modes of 
self-resonance. 

4. NON-LINEAR DYNAMICS OF LONGITUDINAL 
DEFORMATIONS OF THE PLATE 

Longitudinal deformations, which occur in the plane of the plate and are not accompanied by bending 
of the plate, are a particular form of the deformations of a thin plate. Unlike transverse bendings of 
the plate, these are comparatively rapid processes. The equations of perturbation theory given above 
must therefore be changed. 

Suppose the previous estimates hold for the change in the fields u, in space and for the value of the 
external loading, while estimate (2.7), characterizing the change in the displacements with time, is 
replaced by &I&& = O(1). In this case the effective equations of the dynamics of longitudinal 
deformations of the plate are obtained by a small modification of the previous calculation scheme. On 
the one hand, additional inertial terms appear in the equations of perturbation theory. On the other, 
all terms not containing derivatives with respect to time are obtained from the previous equations 
provided u3 -(‘) = 0 (k = 0, 1,2). We will point out the key factors. 

Essentially, for the rapid processes being considered, the inertial properties of the plate and the 
two-dimensional stresses crup @ + *) (k = 1,2) turn out to be related: 

The relation between the stresses o$+ ‘) 
i@ = 0 (k = 0, 1,2). Fro 

and the displacements is the same as relation (2.18) with 
m the equations of evolution for the fields u, , -(3) taking into account the constraint 

which follows from relation (4.1), we obtain, after integration with respect to TJ 

Expressions for e$, o$, II$, are obtained from the previous ones when HCk) = 0 (k = 0, 1,2). 
4 The effective non-linear equations for the resulting displacements V, = u, 

by combining expressions (4.1) and (4.2) 
+ I$) + Zi3) are obtained 

(4.3) 
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where 
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while in the expression II&46 we must make the formal replacement $r’ + v,. 

Equations similar to (4.3) were derived previously in [12] from the variational principle using the hypothesis of 
the generalized plane stressed state. This hypothesis corresponds exactly to relation (2.12) when n = 2 and 
Z$‘) = 0 (k = 0, 2) However, approximation (2.12), if we neglect the correction Uc3) by itself violates boundary 
condition P$) (n = ‘*l/z) = 0 on the plate surface. At the same time the inclusion of u, -5t3) leads to the disappearance 
of the linear dispersion term -&A$ in the equations of [12]. In order respects the equations of [12] are 
identical with Eqs (4.3). The parameters /3, and l32 from [12] are related to the moduli of elasticity al and a2 of the 
present paper by the relations 

b, = a,/(li'+2h p2 = 2(3a,+a,)l(3[li'+2p]) 

Since the linear dispersion terms are responsible for the formation of soliton-like states, we will discuss 
the possibility of the formation of longitudinal-deformation solitons in the plate. We will consider the 
special case when the longitudinal displacements of the plate depend only slightly on the spatial 
coordinate c2, and the displacements along theX2 axis are small compared with the displacements along 
thex, axis: I& - a,v,la,v, - el. Moreover, we will neglect surface and mass forces. 

Note, that when describing processes which change more slowly in space than the ones considered, 
there is no need to revert once again to the initial (3 + 1)-dimensional equations and to reconstruct 
the perturbation theory. It is easier to carry out the necessary reduction within the framework of the 
effective equations (4.3). 

In this case, in the principal approximation, there are no local rotations of the medium around the 
x3 axis, and hence the shear deformations satisfy the condition dry = &vi. Taking this into account, 
system (4.3) can be reduced to a (2 + I)-dimensional equation for the field $I = aivr 

at+ = 
[ 
h’+2pL\+G 3L’ 2 2 2 - 

P 
E zi; aTa, 4-dh2 (1 1 (4.4) 

In the lon -wave limit for perturbations, which propagate with velocities close to the velocity of sound 
s = + 
a:@ 

(h + 2n)/u (in dimensionless variables), Eq. (4.4) can be simplified by using the approximation 
= s2a& + o(E~). As a result we have 

a:@ = [cY.(~“)A - d4*O)aflg + gafq2 (4.5) 

where 

#. 0) _ h’+2p ($4.01=-< &y 

P ’ ( > 12 2u 

g = ;[3a* + a2 + gh’ + 2p)] 

If, in Eq. (4.5) we neglect the dependence of the field Cp on the spatial coordinate t2, it reduces to 
the completely integrable Boussinesq model. If we confine ourselves to considering waves moving in 
one direction along the x1 axis, with velocities close to the velocity of sound, model (4.5) can be reduced 
to the (2 + 1)-dimensional integrable Kadomtsev-Petviashvili model. 

In the general case, it has been shown [13] that Eq. (4.5) allows of a Backlund transformation. If $. 
is a certain solution of this equation and the function f satisfies the equation 

[ 0: - EC29 O) (DF+D$+a(4’o)Df- 2g+oDflf-f = 0 (4.6) 

then 
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I$, = Q. - 6a(4’o)g-‘~;lnf 

will also be a solution of Eq. (4.5). Here o”,f * f = (3, - &)f(z)f(z’) ] I = T’, etc. are Hirota operators. 
The bilinear form enables us to use Hirota’s method to obtain (2 + 1)-dimensional soliton-like solutions 
[13]. In particular, we obtain the N-soliton exponential solution 

0 = -fj~(4’o)g-‘33~f 

f = c, = 0,l exP[zi>i AijPiPj+ xi PiTi] 

expAij = -[(Ri-Rj)2-k2(pi-Pj* 4ie4j)l[(Qi + QjJ2-k2(pi + Pj, 4; + qj)l-l 
(4.7) 

exm = exP [Qiz + Pi51 + q;(* + TOi1 

k2(p, q) = a’2’o’[p2 + q2] - a(4To)p4, Ri = k(p, qi) 

Here C, = o,.i denotes summation over all possible combinations of p = 0, 1, ci , j denotes summation 
over all possible pairs of N elements, and xi denotes summation over i from i = 1 to i = N. The parameters 
Q, pi, qi, Tlai must satisfy reductions which guarantee that Cp is real. 

When N = 2A4, and the parameters are related pairwise such that Q = Q,* + M, P, = P,* + M, etc. 
(S = 1, 2, . . . I’M), expression (4.7) describes an ensemble of M two-dimensional “pulsating” solitons. 
These solitons become singular at certain space-time points, and hence it is difficult to give them a 
physical interpretation. 

For realpi, qi, L&T qu the solution describes elastic paired collisions of N quasi-one-dimensional “plane” 
solitons of the type 

Q 
6a’4’ W$ ($2.0) _ u* 

=- 
gch*0 ’ 

0 = d(c, + ut), d* = 
4a’4’ 0) >o 

where u the soliton velocity. “Plane” solitons are non-singular. Their stability or instability to two- 
dimensional perturbations depends on the sign of the quantity aC2, ‘)cx(~, ‘I. In this case a(*, ‘)aC4, ‘) < 0, 
and “plane” solitons, moving with supersonic velocities (U > s*), are stable to two-dimensional 
perturbations [ 131. 

It was shown in [13] that model (4.5) also allows of “cigar-shaped” polynomial solitons. In this case 
these solitons are unstable to two-dimensional perturbations. 

The above analysis agrees with the results of experiments on the observation of longitudinal deforma- 
tion solitons in a plate [14]. 
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